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I. INTRODUCTION

The idea of statistical sequence models with finite memory first appeared almost a century
ago, when the Russian mathematician Andrej Andrejewitsch Markov (1856 — 1922) applied
such a type of model for the statistical analysis of character sequences in text [1]. The
important algorithms for training and decoding so-called Hidden Markov Models (HMMs)
were discovered around half a century later by Baum and coworkers [2] and Viterbi [3],
respectively. At that time it was not yet clear, whether a pattern recognition paradigm
based on statistical models, the parameters of which can be learned from samples, would be
successful in some domain, as the paradigm of classical artificial intelligence, which is based
on declarative models and complex reasoning, was still predominant. The first successful
pattern recognition system based on HMMs that became widely known was the HARPY
speech understanding system [4]. Though the competition between rule-based and statistical
methods was not yet decided at that time, the domain of automatic speech recognition
became the field of research, where HMM-based systems were further developed on a large
scale. The models became known to a wider community of researchers from different areas
by the famous tutorial paper of Rabiner [5]. Around that time it became also clear, that
due to the availability of large speech databases collected within the DARPA programs the
statistical paradigm of speech recognition was superior to all rule-based approaches pursued
so far. Only a few years later the vast majority of speech recognition systems were based
upon a combination of HMMs for the statistical modeling of the realizations of acoustic
events and Markov chain models for describing plausible sequences of words from a given
lexicon — a situation which has not changed so far.

Compared to declarative or rule-based approaches for analyzing sequential data the statis-
tical paradigm has two important advantages. First, the vast majority of model parameters
can be optimized on sample data. Second, the approach solves the problem that for a task
requiring both segmentation and classification of the data neither step can be performed
optimally in isolation. As Markov-model based recognizers integrate segmentation and clas-
sification into one framework the methods are also referred to as being segmentation-free.

From the other areas of pattern recognition that Markovian models began to conquer after
their great success in the speech recognition field the most important ones are the analysis of

biological sequences and the recognition of machine printed or handwritten texts. However,
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the technology has been widely used to analyze sequential data of as diverse types as, for
example, financial time-series or visually observed hand trajectories in gesture recognition.

Nowadays no one would doubt that Markov models — namely HMMSs in combination with
Markov chain models — have become the state-of-the-art tool when aiming at the analysis of
data that is either explicitly time dependent as, e.g., speech signals or that can be linearized
appropriately as, e.g., images of handwritten text lines.

Though the core of the mathematical theory behind HMMs and Markov chain models is
rather simple it is still a challenging task to realize a successful application on the basis of
Markov models for some domain. This is mainly due to the fact that in order to implement
the relevant algorithms not only the basic theoretical but also quite some practical aspects
have to be taken into account. One example is, that the Viterbi algorithm for decoding
HMDMs, for which descriptions can be found in numerous places in the literature, in practice
is not efficient enough for decoding realistic models and, therefore, needs to be enhanced by
a suitable pruning strategy.

Therefore, the goal of the ESMERALDA framework is to provide researchers with the
necessary methods and tools in order to be able to successfully develop HMM-based recog-
nizers for “real-world” problems. In the implementation of the development environment
techniques were realized such that also the important practical aspects were addressed as,
for example, efficiency in both training and decoding of the models, robustness of parame-
ters estimated on limited sample sets, and the possibility to use HMMs and Markov-chain
models in an integrated decoder.

In this paper an overview of the ESMERALDA system will be given including brief
descriptions of applications realized so far using the ESMERALDA framework. In the
following section first the relevant concepts behind HMMs and Markov-chain models will be
summarized. The overall architecture of ESMERALDA will then be described in section 11
including a brief description of the modules available. Section IV then gives an overview of

the various applications realized so far using ESMERALDA.

II. MARKOV-MODEL CONCEPTS

For the analysis of sequential data the use of Hidden Markov Models (HMMs) as statistical

models has become the state-of-the-art. In combination with statistical language models for
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describing restrictions of possible hypotheses sequences powerful classification systems can
be realized in numerous application domains. Generally, Markov models are applicable to
all signal data evolving in time. Furthermore, when substituting time dependency with
position or location dependency in a single dimension an even broader spectrum of data can
be treated.

When applying Markovian models for pattern recognition purposes one always assumes
a statistical model for the generation of the data to be analyzed. A sequence of symbols or
words w generated by some source is coded into a signal representation and later observed
as a sequence of feature vectors X. The goal of the recognition process then is to find the
sequence w that maximizes the posterior probability P(w|X) of the symbol sequence given
the data.

P(w)P(X|w)

w = argmax P(w|X) = argmax PX)

= argmax P(w)P(x|w) (1)
When applying Bayes’ rule P(w|X) can be rewritten into a form, where the two modeling
components of Markov-model based recognition systems become manifest. P(w) denotes the
language model probability for the sequence of symbols w and P(X|w) represents the prob-
ability of observing this sequence of symbols as sensor data X according to the “appearance”
model, namely the HMM.

The fundamental advantage of Markov-model based recognizers is that they do not require
an explicit segmentation of the data prior to its classification. The recognition is thus
performed in a segmentation free manner, which means that segmentation and classification
are integrated.

In the following the theoretical principles of both hidden Markov and Markov-Chain mod-
els are briefly summarized including usage aspects and an overview of relevant algorithms.

For a more thorough treatment of HMMs and n-gram models the interested reader is referred

to [6] and the references given therein.

A. Hidden Markov Models

Hidden Markov models describe a two-stage stochastic process with hidden states and
observable outputs. The first stage represents a discrete stochastic process which produces

a series of random variables that take on values from a discrete set of states. This process
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is stationary, which means that its statistical properties do not change over time, and also
causal and simple. The last two properties taken together restrict the dependency of the
probability distributions of states generated by the random variables to be dependent on

the immediate predecessor state only. The Markov process is then said to be of first order.
P(St|81, S92, ... ,St,1> = P(St‘Stfl)

Basically, this first stage represents a finite state automaton which behaves probabilistically.
In the second stage then at every time ¢ an output is generated depending on the current

state s; only:

P(Ot’01 e Otfla S1... St) = P(Ot’fﬁt)

Since only these outputs O; and not the associated internal states s; can be observed, the
overall model is referred to as hidden Markov model. Depending on the type of input data
the output elements generated per state can be either symbolic — i.e. of discrete type — or
continuous. For pattern recognition purposes the latter representation is suited better, as
usually real-valued vectors from some high-dimensional feature-space need to be processed.
Consequently, the probability distributions of the statistical outputs of the model need to
be able to define continuous distributions over R¥. Since no general parametric families of
such distributions are known, in the continuous case probability distributions are usually
approximated via mixtures of Gaussians.

In summary, a first order hidden Markov model A is formally defined as consisting of:

e a finite set of states {s|1 < s < N},

e a matrix of state transition probabilities! A = {a;j|a;; = P(s; = j|si-1 = 1)},

e a vector of start probabilities m = {m;|m; = P(s; =)}, and

e state-specific output probability distributions {b;(O;)|b;(O¢) = p(O¢|s; = j)}, which

may be either discrete or continuous.

HMMs are attractive because there exist efficient algorithms for estimating the model
parameters as well as for decoding the model on new data, which is equivalent to the

aforementioned integrated segmentation and classification of the associated data.

I For practical applications the actual model topology — i.e. the connectivity between states of a certain

model — is usually limited using specific, non-ergodic model architectures (e.g. linear or Bakis type).
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For training the model a variant of the well-known Expectation Maximization (EM)
technique [7], namely the so-called Baum-Welch algorithm is normally used. The method
applies an iterative growth transformation to the model parameters such that the generation

probability of the data given the model is improved:
P(O[}) > P(O|))

Here )\ denotes the adapted HMM derived from the previous model A by applying one
re-estimation step to the parameters.

The basis of model decoding is formed by the so-called Viterbi algorithm, which is used to
— in the statistical sense — “infer” the hidden state sequence that with maximum probability

generates an available sequence of outputs given the model:
s* = argmax P(O, s|\)
S

As states can be associated with basic segmentation units, decoding yields the segmentation
of the data considered on the basis of the current model.

The efficiency in both evaluating and decoding the model arises from the fact that HMMs
store only one internal state as context for future actions, which is also called the Markov
property. Therefore, computations necessary to obtain the production probability P(O|\)
and the optimal state sequence s* can be performed in a dynamic programming style with
linear complexity in the length of the sequence considered and quadratic complexity in the
number of model states. Still, the algorithms are usually not efficient enough in practice,

such that especially for decoding the model clever pruning strategies are applied.

B. Markov-Chain Models

In addition to the analysis of local context within sequential data, which is covered by
HMDMs, it is desirable in many applications to be able to describe long-term dependencies
within the statistical modeling framework. In speech recognition, for example, where indi-
vidual HMM states describe parts of elementary phonetic units, restrictions concerning the
potential co-occurrences of subsequent words can not be captured using HMMs alone. This
is where Markov-chain models come into play.

Markov-chain models can be used to statistically describe the probability of the occur-

rence of entire symbol sequences. Formally speaking (cf. equation 1) the probability P(w)
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of a sequence of symbols w = wy, ws, ..., wy is calculated. In order to make things mathe-

matically tractable, P(w) is first factorized using Bayes’ rule according to

P(w) = P(wy) P(wa|wy) ... P(wr|wy, ..., wr_1) = HP(wt|w1, e, W)

t=1
Since the context dependency increases arbitrarily with the length of the symbol sequence,
in practice the “history” of a certain symbol is limited:

T

P(w) ~ H P(}Ut| Wt—n+1y--- 7wt—lj>

t=1

n sygbols

This means that the probability of the complete sequence is defined on the basis of the
conditional probabilities of some symbol — or word — w; occurring in the context of its n — 1
predecessor words w;_p41,--.,w;_1. Markov-chain models are, therefore, often referred to
as n-gram or language models.

For the evaluation of n-gram models on unknown data usually the perplexity P

1 _ 1
“/P(w) 3/ Plwy,ws, ..., wr)

is exploited as the evaluation criterion. Formally, the perplexity of some unseen data w is

Hl=

P(w) =

:P(wl,wg,...,wT)

the cross-entropy between the symbol distribution defined by the probabilistic model and
the one defined empirically by the data. The smaller the perplexity the better the n-gram
model is able to predict the unseen data.

In principle the conditional probabilities required for Markov-chain models can be derived
from training data. However, even for moderate sizes of n (e.g. 2 for bi-gram models or 3
for tri-gram models) most n-gram events necessary for deriving robust statistical estimates
will not be observed in a typical set of training data due to its limited size. Therefore,
for robust estimation of n-gram models it is of fundamental importance to appropriately
smooth the raw probabilities in order to obtain useful probability estimates for events not
observed in the training data (so-called unseen events). Therefore, in practical applications
n-gram counts are modified and some “probability mass” for unseen events is gathered, e.g.
by certain discounting techniques. The resulting zero-probability is then redistributed to
unseen events according to a more general distribution. Widely used examples of smoothing

techniques are Backing-Off and Interpolation (cf. e.g. [8]).
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As HMMs and n-gram models are quite similar to each other they can be combined rather
easily into an integrated model (cf. equation 1). In order to balance between the different

granularities of the models a weighted combination of the different scores is necessary:
P(w)’P(X|w)

Furthermore, as n-gram models span considerably longer contexts than HMMs also the

search procedures used for integrated model decoding become more complex.

III. SYSTEM OVERVIEW

In order to actually benefit from the capabilities of Markov models for recognition appli-
cations in real-world scenarios, implementations of the methods not only need to address the
theoretical concepts outlined in the previous section. For building successful applications
important additional aspects have to be considered. The most important ones are numerical
issues, the robust estimation of parameters on realistic —i.e. small — training sets, the actual
application-specific configuration of the models, and the efficient model evaluation for inter-
active applications.? Those practical considerations primarily motivated the development of
the toolkit described in this paper.

ESMERALDA - an integrated Environment for Statistical Model Estimation and
Recognition on Arbitrary Linear Data Arrays — is a development environment for build-
ing statistical recognizers operating on sequential data as, for example, speech, handwrit-
ing, or biological sequences. The framework primarily supports continuous density Hidden
Markov Models of different topologies and with user-definable internal structure. Further-
more, Markov chain models (realized as statistical n-gram models), which can be used to
complement HMM-based systems, are provided for representing long-term sequential re-
strictions. Additionally, Gaussian mixture models (GMMSs), which are used to represent the
output behavior of HMMs, can also be used in isolation for solving general classification
tasks, where a model internal structure for representing local contextual restrictions is not

required.

2 A more detailed overview of practical issues relevant for Markov-model based recognizers is given in [6,
Part IT].
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From the wealth of methods proposed in the context of Markovian models, it is the
goal of ESMERALDA to put together a tractable set of conceptually simple yet powerful
techniques in an integrated framework. The system consists of a modular architecture (cf.
figure 77). Separate base-modules for estimating mixture density models (md) in conjunction
with HMMs (mm) and for building n-gram language models (1m) are provided. Specialized
algorithms necessary for certain application domains are provided in additional modules.
These are: Speech processing module (dsp), image processing module (im), handwriting
recognition module (pen), and (biological) sequence processing module (seq).

Furthermore, modules providing runtime system functionality (rs), fundamental linear
algebra operations (mx), and tools for feature extraction and manipulation (£x), respectively,
are the basis of the general framework. Technically, every module contains a library with an
API as well as stand-alone programs for manipulating the appropriate models and associated

data.

[Figure 1 about here.|

A. Mixture densities

For describing the statistical output behavior of continuous HMMs that operate on
streams of real-valued vectors from some high-dimensional feature space, mixtures of Gaus-
sian distributions are widely used. The primary reason for this lies in the fact that these
models are capable of approximating any general multimodal distribution over RY. ES-
MERALDA provides implementations of techniques for robust unsupervised mixture den-
sity estimation on API-level and as standalone programs, respectively. Standard clustering
techniques namely k-means, Lloyd and LBG can be used for the initialization of mixture
density models on un-annotated data. The clustering process can be configured using various
heuristics for robust parameter initialization. Following this, actual mixture model training
based on Expectation Maximization can be performed using tools from ESMERALDA’s
md-module. In addition to mixture model estimation “from scratch” it might be favorable
to actually adapt existing Gaussians exploiting domain specific training data. In this case

maximum a-posteriori (MAP) adaptation of mixture density models can be performed using

ESMERALDA.
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By means of the md-module certain linear feature space transforms, like Principal Com-
ponent Analysis (PCA) or Linear Discriminant Analysis (LDA), can be estimated. Separate
tools for estimating the transforms as well as for their application to the data are provided.
In addition to this, for efficiency and for the sake of saving storage space those transforms can
also be directly integrated into the mixture density models allowing for “on-the-fly” calcu-
lations. Furthermore, for efficient model evaluation a two-stage decoding scheme [9] can be

used, which substantially reduces the computational effort required for mixture evaluation.

B. Hidden Markov Models

HMM-based recognizers estimated using ESMERALDA consist of elementary models
specifying a certain topology, i.e. type of allowed state transitions. The framework provides
built-in support for models with Linear, Bakis, Left-Right, Bounded Left-Right [10], and
Profile topology. Furthermore, arbitrary model architectures can be defined by the user.
Elementary models, independent of their particular topology, are built from individual state
definitions that carry all statistical model parameters. From these models more complex
and structured HMMSs can be constructed by using a declarative specification language.

Model estimation is usually started with some kind of initialization (for model adapta-
tion see below). ESMERALDA’s mm-module provides automatic initialization procedures
exploiting labeled data for HMMs based on elementary models with one of the built-in
topologies. For actual model training, i.e. parameter optimization, the standard Baum-
Welch re-estimation algorithm (a variant of the EM-method) is implemented as stand-alone
program within the mm-module. Furthermore, it can also be accessed at the API-level, i.e.
as a library-function. For efficient parameter optimization the Beam-search procedure is
included in the training procedure.

For finding a good balance between precision of models and robustness of parameter
estimates, ESMERALDA provides the possibility of state clustering. Based on an entropy
criterion similar states are grouped into clusters for which individual new parameter sets are
created. These new parameters can then be optimized in subsequent re-estimation steps. By
means of ESMERALDA’s parameter estimation capabilities as summarized here robust and
efficient HMM training can be performed with maximum exploitation of (limited) annotated

sample sets.
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When aiming at the adaptation of existing HMMs towards a specific target domain on lim-
ited sample data only, Maximum Likelihood Linear Regression (MLLR) as well as Maximum
A-Posteriori (MAP) adaptation in recent years became state-of-the-art methods. ESMER-
ALDA provides efficient implementations of those semi-supervised adaptation techniques on
API-level, and as stand-alone programs, respectively.

In order to evaluate Hidden Markov models on unknown data both the forward-backward
algorithm and efficient Viterbi Beam-search decoding is provided by ESMERALDA’s mm-
module. In the latter the basic Viterbi algorithm is greatly enhanced in its efficiency —
especially when working with large scale models — by adding a pruning strategy that focuses

the search to a “beam” of promising path hypotheses around the currently best solution (cf.

[4])-

C. N-gram Models

Although Hidden Markov models are very powerful for various recognition tasks in many
applications their limited memory can be restricting w.r.t. recognition performance since
long-term dependencies between sequential data can not be covered. These dependencies
might contain substantial discriminative information. Especially for large inventory recog-
nizers possible hypothesis sequences are desired to be restricted in some reasonable manner.

In order to cover long-term dependencies as mentioned before the application of statistical
language models can be considered state-of-the-art. Since they can rather easily be combined
with Hidden Markov models (cf. equation 1), Markov chain models — so-called n-gram
models — are usually the methodology of choice for integrating long-term restrictions into
statistical recognition systems.

Therefore, ESMERALDA’s 1m-module includes tools for estimating arbitrary n-gram
models. Methods for redistributing probability mass and smoothing distributions (in order
to assign robust non-zero probability estimates to unseen n-grams) are used. More specif-
ically, ESMERALDA allows for memory efficient estimation of n-gram statistics analyzing
ordinary text data. Based on these statistics n-gram models can be estimated efficiently
based on different smoothing techniques. Most notably absolute and linear discounting
are implemented as well as backing-off and interpolation. Furthermore, tools are provided

allowing for an efficient decoding of long-span models.
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N-gram related techniques are accessible at API-level, i.e. as library functions, and as
standalone programs, respectively, allowing for the rapid development of user-defined recog-
nition systems. Furthermore, an ready-to-use integrated recognizer combining both HMMs

and statistical language models is provided with the toolkit.

D. Integrated Development Environment

ESMERALDA was designed with special focus on the development of recognition systems
which can be embedded into “real-world” applications. Therefore, a command line interface
has been developed allowing for pipelined operation by cascading the particular modules.
All external representations of ESMERALDA related data (e.g. HMM parameters, mixture
density models etc.) come as human-readable ASCII-data allowing for easy reproducibility
and debugging.®? Besides the three core-modules described in the previous sections (namely
md, mm, and 1m) certain additional modules provide runtime system and application specific
functionality, respectively. In the following a brief overview of those modules including the

algorithms implemented will be given.

Runtime System (rs): The purpose of ESMERALDA’s runtime system is to provide fun-
damental system handling functions which make the software creation process easier
and more convenient for developers. The rs-module consist of functions addressing
basic input/output operations, memory management, and access to operating system
features (like timers etc.). Furthermore, basic data types and related algorithms are

included.

Linear Algebra (mx): For most pattern recognition systems, especially for those based on
Markov models, linear algebra methods represent the core of related algorithms. It is
the goal of ESMERALDA’s mx-module to provide a comprehensive developer’s toolkit
including such basic linear algebra methods. Examples are basic matrix operations
(e.g. multiplication, summation, transpose etc.) or more complex operations like
inversion, efficient and robust calculation of Eigenvalues, or solving linear equation

systems.

3 Feature data, however, is the only (reasonable) exception which is stored in (raw) binary ANSI/IEEE 854

single precision floating-point format.
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Feature Extraction and Manipulation (fx): Pattern recognition systems are usually
based on (high-dimensional) real-valued feature vectors. For certain basic manip-
ulations like computing derivatives, extraction of components, merging, smoothing,
calculation of statistics and (linear) transformations ESMERALDA’s fx-module pro-
vides various tools. These stand-alone programs can easily be integrated into high-

throughput workflows, e.g. for transforming complete sample sets.

Evaluation (ev): The evaluation of classification experiments based on the results pro-
vided by the particular recognizer can be tedious work. For convenience the ev-module
provides tools which allow for the computation of error rates for classification, seg-
mentation, and detection experiments (e.g. for tasks where certain patterns need to
be localized within large sequences). In the latter case, ROC and DET curves can
be created based on numerous different evaluation criteria. For easy visualization a

interface to gnuplot is included.

ESMERALDA also includes modules that provide specialized functionality required for

certain application domains:

Speech Processing (dsp): One of the many application areas of ESMERALDA was and
still is automatic speech recognition. The dsp-module implements the required pre-
processing and feature extraction techniques. Algorithms for the computation of mel-
frequency cepstral coefficients (MFCCs) including causal cepstral mean-normalization
are available. Additionally, the dsp-module provides basic methods for voice activity

detection.

Image Processing (im): Especially for recognition systems addressing the analysis of im-
age data ESMERALDA’s im-module is provided. It includes easy to use generalized
image data types and certain standard (filtering) algorithms (e.g. Canny, Sobel etc.).
Currently, automatic handwriting recognition represents the most prominent applica-
tion of Markov model based image analysis using ESMERALDA and it’s im-module
(cf. section IV B).

Note that the im-module is not restricted to be used in Markov model based recognition
systems only. In fact it represents a more general, easy-to-use image processing toolbox

which already has been successfully applied especially in batch-like workflows.
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Handwriting Recognition (pen): Using the core modules of ESMERALDA and the
aforementioned im-module the pen-module provides certain high-level, ready-to-use
tools required for setting up complete (offline, i.e. image based) handwriting recogni-
tion systems. This includes image preprocessing as well as feature extraction necessary

prior to the actual HMM- and n-gram based modeling and recognition, respectively.

(Biological) Sequence Analysis (seq): The analysis of biological sequences requires cer-
tain specialties in treatment of the data at the technical level. As an example the
different inventories specific to particular types of data need to be treated. ESMER-
ALDA supports all kind of symbolic input data by allowing for direct mapping of the
particular symbols to (binary) vectors. Thus, e.g. nucleotides of DNA sequences are

mapped to four-dimensional vectors with Adenin represented as (1000)7, Cytosin as

(0100)" and so forth.

Additionally the seg-module contains certain tools enabling batch processing work-

flows for automated high-throughput analysis of biological sequences on a large scale.

The framework is completely written in ANSI-C. Currently, it runs on several UNIX-like
operating systems (including Linux, MacOS X, and Solaris). Due to its modular architecture
and the convenient API it can easily be used and extended for various applications domains.

The software is open source and can be retrieved either from the authors directly or from

sourceforge? under the terms of the GNU Lesser General Public License (LPGL).

IV. APPLICATIONS

The development of ESMERALDA started more than a decade ago and the framework
meanwhile reached a rather mature state.> Various researchers are now actively using it
for their own work in academia. Furthermore, the toolkit has also been used in several
industrial applications serving as backbone recognition framework in rather complex systems

addressing the analysis of sequential data.

4 http://sourceforge.net/projects/esmeralda
5 An early description of (parts of) the toolkit in the context of automatic speech recognition can be found

in [11].
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As specific examples, ESMERALDA has already successfully been applied to a number
of challenging pattern recognition problems in the field of automatic speech recognition,
offline handwriting recognition, protein sequence analysis, and analysis of music data. In

the following a brief overview of ESMERALDA'’s application within these domains is given.

A. Speech Recognition

Originally designed for speech recognition purposes the use of ESMERALDA within this
domain has a fairly long history. Allowing for batch as well as for interactive speech recog-
nition, signal recording and feature extraction (based on MFCCs) modules are integrated.

Within an incremental speech recognizer all calculations from feature extraction to lan-
guage model search are carried out strictly time-synchronously [12]. In order to be able to
produce recognition results for an utterance while the user is still speaking, i.e. the end
of the input signal is not yet reached, an incremental processing strategy was developed.
Additionally the recognizer is capable of applying the constraints of a context-free gram-
mar in conjunction with a statistical language model [13]. In [14] acoustic and articulatory
information have been combined using ESMERALDA for robust speech recognition.

As prominent examples, the toolkit has been used for the development of online speech
recognizers embedded in intelligent human-robot interaction systems (cf. e.g. [15, 16])
including automatic speaker identification [17]. Furthermore, a recognizer for accessing non-
safety relevant functions of cars was realized [18] including online adaptation to changing

acoustic environments [19].

B. Handwriting Recognition

The use of HMM-based techniques for handwriting recognition was inspired by the success
of statistical models in the field of automatic speech recognition [20]. Over the last decade
those models became popular and were applied with great success by a number of research
groups. Depending on the recording process, handwritten script is either processed as online
(i.e. trajectories of pen movements captured by pressure sensitive tablets) or offline data
(i.e. digital document images acquired by e.g. scanners or video cameras). In the latter

case lines of script are extracted from the images of the handwriting data and are usually
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subject to several pre-processing and normalization operations. Subsequently, sequential
data is extracted, by means of a sliding window approach resulting in a stream of features.

In recent years ESMERALDA has been successfully used for realizing offline handwriting
recognition systems (cf. e.g. [21]). Feature streams are calculated from lines of handwritten
script which are automatically extracted from the particular documents analyzed. By means
of ESMERALDA, HMMs with Bakis topology are estimated for letters which are combined
to word models using the framework’s configuration language. The integration of bi-gram
models restricts the decoding reasonably.

ESMERALDA has also been used for the realization of a video-based whiteboard reading

system which recognizes handwritten notes [21].

C. Biological Sequence Analysis

The functions of proteins, which are of major interest for life-science applications, are
more or less directly connected to their primary structure, i.e. the underlying sequence of
amino acids. Due to the linear structure of this biological data (complex) Profile HMMs
with specific topologies have been applied very successfully to genomics and proteomics tasks
[22].

By means of the ESMERALDA framework substantial enhancements of the basic ap-
proach to sequence alignment have been developed (cf. e.g. [10, 23]) improving the detec-
tion of remotely related protein sequences, which is especially relevant for pharmaceutical
purposes. Therefore, a new feature representation for protein sequences was developed [24]

allowing for semi-continuous protein family HMMs with less complex model architectures.

[25].

V. SUMMARY

In this paper we presented the ESMERALDA framework — an integrated Environment for
Statistical Model Estimation and Recognition on Arbitrary Linear Data Arrays. It provides
a conceptually simple yet powerful set of methods and tools for building pattern recognition
systems based on Markov models. It can be applied to solve challenging recognition problems

on sequential data as, for example, speech, handwriting, or biological sequences. ESMER-
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ALDA primarily supports continuous density Hidden Markov Models (HMMs). Complex
HMDMs can be created from elementary models, for which different topologies or a completely
user-definable internal structure can be specified, by using a declarative configuration lan-
guage. The framework provides the relevant algorithms for parameter estimation and model
decoding. In addition to HMMs for capturing statistics of local contexts in data ESMER-
ALDA also supports the creation and use of statistical n-gram models (i.e. Markov chain
models), which can be used to describe long-term sequential restrictions. As these models
are compatible with HMMs they can be used in a combined fashion for integrated decod-
ing. The Gaussian mixture models, which are part of continuous HMMs for describing their
output behavior, can also be used independently with the tools and methods provided by
ESMERALDA for solving standard classification tasks where no internal model structure is
necessary.

Currently, ESMERALDA is used by a number of institutions in academia and indus-
try for research purposes and for developing “real-world” applications. Several challenging
recognition problems were successfully tackled by using the ESMERALDA framework. The
most important domains investigated are automatic speech recognition, offline handwriting
recognition, and the detection of remotely homologous protein sequences in large databases.

The software is open source and can be retrieved from sourceforge® under the terms of

the GNU Lesser General Public License (LPGL).
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Figure 1: Overview of the system architecture of ESMERALDA. The development toolkit consist
of three basic modules for estimating mixture density models (md), HMMs (mm), and for building
n-gram language models (1m). Additional modules (not shown here) provide tools for specific
application domains and basic runtime system functionality (see text for details).
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