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Abstract

One obstacle in the automatic analysis of handwrit-
ten documents is the huge amount of labeled data typ-
ically needed for classifier training. This is especially
true when the document scans are of bad quality and
different writers and writing styles have to be covered.
Consequently, the considerable human effort required
in the process currently prohibits the automatic tran-
scription of large document collections. In this paper,
two semi-supervised multiview learning approaches are
presented, reducing the manual burden by robustly de-
riving a large number of labels from relatively few man-
ual annotations. The first is based on cluster-level an-
notation followed by a majority decision, whereas the
second casts the labeling process as a retrieval task and
derives labels by voting among ranked lists. Both meth-
ods are thoroughly evaluated in a handwritten charac-
ter recognition scenario using realistic document data.

1 Introduction

Training pattern recognizers typically requires large
amounts of manually annotated samples in order to cap-
ture the characteristics of the data. In offline hand-
writing recognition, where characters may exhibit large
variations in appearance due to different writers and
writing styles, and no temporal information is available
to aid the task, this problem is especially severe.

In museums and archives, large collections of hand-
written documents exist that are of great potential in-
terest for historians and scientists. Thus, there has
been considerable effort to digitize them. However, ide-
ally, the scanned document images should be fully tran-
scribed in order to enable fast searching, browsing, effi-
cient storage, and complete automatic analysis. Today,
the transcription is still mostly done manually, which is

a very laborious and tiresome task, and only insignifi-
cant numbers of documents can be processed this way.
Nevertheless, the lack of sufficiently reliable general of-
fline handwriting recognizers and the amount of effort
that has to be spent in training them currently prohibits
fully automatic processing of such collections.

The focus of this paper is thus not primarily to in-
vestigate features or techniques for handwritten char-
acter recognition, but to develop methods that help in
annotating large amounts of data efficiently. Suppose
it is possible to label large databases with sufficiently
small manual effort, say, a few hundred manual oper-
ations to label several thousand samples. Then, even
the repeated training of classifiers specialized on some
specific writer or script may become feasible. It can be
expected that such a specifically trained recognizer will
perform better than a general one, that has to cover the
variations of largely differing writing styles.

Therefore, two methods are presented that greatly re-
duce the required manual effort in labeling by adopting
approaches from the field of semi-supervised and mul-
tiview learning (cf. e.g. [18]), utilizing a voting scheme
over different feature representations of the data in or-
der to increase reliability. The first method is based on
clustering, annotating the clusters and performing a ma-
jority vote. The second casts the labeling problem as an
interactive retrieval task. The applicability of both is
demonstrated on a set of handwritten documents.

2 Problem statement

In offline handwriting recognition, the large variabil-
ity of character appearances over different writers and
styles poses a challenging problem. Consequently, the
error rates obtained in multi-writer recognition scenar-
ios are typically high (cf. e.g. [8]). Existing recogniz-
ers thus are often restrained to a single writer (cf. e.g.
[2, 17]). While there exist successful approaches for au-
tomatic keyword indexing in document collections (cf.
e.g. [9, 11]), the automatic transcription of handwritten



documents still remains an open problem. Generally,
recognizers can only perform reliably on data similar to
the training data, and have to be adapted or re-trained
when applied to a new data domain. Consequently, the
amount of human effort required to collect sufficient
ground truth data for training becomes prohibitive for
applications outside the academic field.

Thus, it is worthwile to develop methods that re-
duce this labeling effort, making the training of special-
ized – and, thus, more reliable – classifiers feasible for
large and diverse collections. We seek to contribute in
this field by presenting approaches for efficient labeling
of large data sets, adopting ideas from semi-supervised
learning to alleviate the required manual effort.

The general idea of semi-supervised learning (cf.
e.g. [18]) is to operate on both labeled and unlabeled
data. Specifically, semi-supervised classification is the
problem of training a classifier when only a small part
of the data is annotated and the (typically) vast majority
of data labels is unknown. Consequently, known labels
must be robustly propagated to the unknown data by
using unsupervised techniques. In order to achieve this,
we adopt the concept of multiview learning. Here, an
ensemble of learners is trained, each having a different
view on the data (for an overview of ensemble methods,
cf. e.g. [6]). Decisions are then obtained by combining
the outputs of the different learners, e.g. by majority
voting. Some concepts used in this work are also re-
lated to active learning (cf. e.g. [13]), where the learner
actively selects the data that should get annotated based
on its current knowledge in a feedback loop.

The problem of propagating labels to large corpora
from just a few annotated instances has been studied
extensively in the field of semantic image retrieval (cf.
e.g. [3, 14]). In [1], it is shown that the recognition
rate of a handwriting recognizer can be improved using
a self-learning strategy on unlabeled adaptation data. In
[12], character annotations are derived from word-level
ground truth by optimizing segmentation hypotheses in
an unsupervised manner. However, the initial set of
word annotations must be provided manually.

3 Proposed methods

In the following, we outline the proposed semi-
supervised multiview methods for efficient labeling in a
general manner. Concrete realizations and parametriza-
tions will be presented in section 4.

3.1 Clustering-based annotation (CBA)

In our previous work [16], a multiview labeling
method requiring minimal human effort was proposed.

We slightly enhance this method in the following, and
provide a more throrough evaluation. The idea behind
the method is simple: Label as few samples as possible
and infer the labels for other samples automatically.

The labeling process consists of three major steps.
First, an ensemble of data representations is created,
providing alternative views of the data by using differ-
ent types of features. Then, each representation is clus-
tered into kj clusters, where kj may differ for each rep-
resentation. Further diversification is achieved by ap-
plying different clustering algorithms. The result is a
set of r different data setupsRj , j = 1...r , i.e. alterna-
tive combinations of features and clustering algorithms.

Given a set of clusters, only the centroids are labeled
manually, and the rest of the samples in the cluster in-
herit the label. This implies

∑
j kj manual operations,

and yields r independent labels for each sample.
Inheriting labels from cluster centroids will result in

some incorrectly labeled samples, since, generally, the
clusters are not pure. Thus, the final step of the proce-
dure is to determine which labels are reliable. Assume
that the labels are given as d-dimensional binary vectors
[li,1, . . . , li,d]T ∈ {0, 1}d, i = 1, . . . r, where li,j = 1
if a sample p is assigned to class ωj in setup Ri, and
0 otherwise. Applying a majority voting procedure re-
sults in an ensemble decision for a specific class label
ωmax
k . A threshold κc on the ensemble decision is used

to select only those samples where the class member-
ship is determined with high agreement:

ωmax
k = max

k

r∑
i=1

li,k ≥ κc. (1)

In the following, we only retain samples for which all
votes agree on the same label (unanimity vote), i.e.
κc = r. Finally, the subset of samples and assigned la-
bels retained from the above procedure is used to train
a classifier. This classifier can then be used to either re-
evaluate the training data (inductive learning) or clas-
sify a test set of unknown data (transductive learning).

3.2 Retrieval-based annotation (RBA)

The second proposed method is based on interac-
tive retrieval, and is related to pool-based active learn-
ing with relevance feedback (cf. e.g. [15]). How-
ever, it differs in a few important aspects from this
paradigm. Most importantly, we want to retrieve labels
for all possible classes (quasi-) simultaneously. Addi-
tionally, selecting relevant samples manually counter-
acts the goal of lessening the burden for the annota-
tor. Consequently, the manual relevance feedback step
is replaced by a simple automatic selection rule on the
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Figure 1. Overview of the proposed retrieval-based annotation process.

retrieval list, propagating the annotation to unlabeled
samples. Since incorrectly assigned labels will occur
in this stage a multiview voting concept taking into ac-
count several retrieval runs is integrated. The intuition
behind is that, if multiple runs for the same query in sev-
eral data representations agree on a subset of samples,
then those belong to the query class with high confi-
dence. Figure 1 gives an overview of the procedure.

Let X = {Xi, i = 1...n} be a pool of n unla-
beled data samples , Xi = {xij ,ui,vi, ni, j = 1...r},
where xij is the i-th data sample’s j-th feature repre-
sentation, ui is a variable-length vector of class labels
(empty on initialization), vi is a vector of confidence
scores associated with each label in ui, and ni is the
number of times the sample has been considered. Also,
let T = {Xk, yk, k = 1...m} be an initially empty pool
of trusted samples, with the k-th sample’s final label yk.

First, a sample Xs is selected from X . Since no in-
formation is available in the first iteration, this selection
is random. In further iterations, only the subset X̂ of
samples with minimum value of ni is considered, i.e

X̂ = {Xl : nl = min
i

(ni)}, (2)

and Xs is selected randomly from this subset. The ratio-
nale behind is that those samples should be selected that
have not been considered (often) before, thus exploring
the data set. Then, a class annotation ωs for Xs is re-
quested from the annotator, which can also be a rejec-
tion label. This manual assignment is trusted, hence Xs

is removed from X and appended to T , with ys = ωs.
Note that, in “real” active learning, the sample selection
would be based on the current state of some classifier.
In omitting this, we are able to start with a completely
unlabeled data set and avoid frequent re-training with
potentially unreliable ground truth.

Afterwards, r retrieval tasks are carried out on the
remaining set X\Xs using the r different feature rep-
resentations xsj as queries. This results in r retrieval
lists Lj , ranked according to some distance d(xij ,xsj),
and thresholded with a common threshold κd on the dis-
tances. In the following, the cosine distance is used for
d(...). Assume that a sample Xp is present in Nr of the

r thresholded lists. Then, the confidence γps of Xp be-
longing to the query class ωs is given by γps = Nr

r . If
γps is 1, i.e. if Xp appears in all thresholded lists, then
X = X\Xp, yp = ωs, T = T ∪ {Xp, yp}. Otherwise,
up = up∪ωs, vp = vp∪γps, np = np+1. The sample
remains in X in this case, and may be considered again
in further iterations. Samples with d(...) > κd in all
retrieval lists remain unchanged.

This interactive procedure is repeated until a termi-
nation criterion is met. In practice, we simply abort
after a fixed number Im of manual operations. Each
remaining sample Xi ∈ X : ni > 0 now has a list
ui = {uit, t = 1...ni} of assigned labels with asso-
ciated confidences vi = {vit}. Furthermore, the set
of available classes Ω = {ωk, k = 1...c} has evolved
based on the manual annotations provided in the pro-
cess. For each Xi, the accumulated class confidences

σi(ωk) =
∑
t

∑
k

vitδ(uit − ωk) (3)

are calculated and then normalized to [0, 1] by dividing
by the maximum possible accumulated confidence:

σ̃i(ωk) =
r

(r − 1) · ni
· σi(ωk). (4)

Finally, the final class label yi of Xi is determined as
yi = argmaxk(σ̃i(ωk)). If the associated maximum
confidence σ̃i(yi) is above a threshold κv , the sample is
added to the set of trusted samples T . Otherwise, the
sample is rejected because the assigned label would be
too unreliable. The classifier is then trained on T .

Compared to CBA presented in the previous section,
the above procedure offers several advantages. No prior
knowledge or assumption about the number of classes
is required because they will evolve implicitly based on
the labels assigned by the annotator. Also, it is possi-
ble to manually reject ”bad” samples, and the required
manual effort does not depend on the number of differ-
ent representations r since they are evaluated simulta-
neously. On the other hand, the impact of errors in the
manual annotation can be expected to be higher. Addi-
tionally, values for the parameters κd, κv and Im have
to be selected heuristically. Suitable values will be de-
termined experimentally in section 4.4.



4 Experiments

In order to assess the performance of the proposed
methods, we first derive suitable parameters on the
MNIST handwritten digit datset [7]. Afterwards, a re-
alistic transductive recognition experiment is conducted
on a set of historical documents.

4.1 Data description and experimental setup

Our data set consists of historical official weather re-
ports, kindly provided by the German Weather Service
(”Deutscher Wetterdienst”, DWD). Detailed character-
istics of the data are given in [10]. For the experiments
reported here, a set of 106 document images was pro-
vided, scanned at approximately 200 dpi. The entire
collection comprises several 10, 000 pages, but only a
small subset is currently available in digitized form.

In total, the data contains 13,331 samples (5,140
characters, 8,191 digits) in 17 classes. Ground truth
labels are available for all samples. The data set is
unbalanced, and several classes occur very rarely. We
assume that knowledge about the type of each sample
(character or digit) is known from a document template
(cf. [10]). This information will be used in the retrieval
and classification to limit the set of candidates. Docu-
ments are subdivided in a 3-fold cross-validation setup.
In each validation set, approximately 2/3 of the docu-
ments constitute the training set and the remaining the
test set. Thus, training and test set are disjunct, but over-
all, all documents are considered once for testing.

4.2 Features

The proposed labeling methods rely on a multiview
approach using different feature representations. In
principle, the methodology is independent of the types
of features used. Obviously, the better the discrimina-
tive power of the features, the better the results will
be. Especially for the retrieval-based approach, com-
pact features are desirable in order to keep the process
efficient and avoid latencies in the interactive loop.

In the following, we focus on a set of features
that yielded good performance in our previous work.
Specifically, we consider the raw image of a charac-
ter (RAW), normalized to size 28 × 28 pixels, its PCA
representation using the first 80 PC [10], and higher-
level structural features based on contour chain codes
(CC), skeletons (SKEL) and character reservoirs (RES)
[5]. The latter were modified by considering 5 types of
reservoirs (top, bottom, left, right, loop) and using just
a soft assignment of the positions of their gravity cen-
ters to image cells. All features are calculated in a 4×4

regular grid on the normalized character image. Feature
dimensionalities range from 36 (SKEL) to 80 (PCA).

4.3 Parametrization of CBA

Even though using all features might provide a bet-
ter discrimination for the different clusters, selection of
a subset is advisable for efficiency reasons. In order to
select the best setup (features/clustering methods), an
exhaustive search was performed. All different features
extracted from the MNIST training material were clus-
tered using k-means, SOM (Self Organizing Map) and
GNG (Growing Neural Gas) [4]. The cluster centers
were then manually annotated by an expert.

As quality criteria, the sample recall R (percentage
of retained trusted samples after voting) and label pre-
cision P (percentage of correctly labeled retained sam-
ples) obtained on MNIST were used. Ranking the dif-
ferent combinations, the best setup was: RAW/GNG,
CC/GNG, and CC/k-means. In general, GNG and k-
means outperform SOM clustering. With this setup and
54 cluster centers [16] for each combination, unanim-
ity vote occured in R = 76.15% of the cases with
P = 96.10%. Thus, 45,690 annotations were inferred
using only 162 manual labeling operations (0.35%).
Compared to [16], the substantial increase in sample re-
call (approx. 21%) while retaining the same labeling
accuracy shows the benefit of using diversified feature
representations and different clustering methods.

4.4 Parametrization of RBA

In order to find suitable values for the parameters
κd and κv , a number of experiments was conducted
on the MNIST data set, performing Im = 500 label-
ing operations and averaging over 10 runs with identical
parametrization in order to smooth the effects of the ran-
dom selection. The manual labeling was simulated by
assigning the respective ground truth label to the query
example, i.e. error-free annotation is assumed. The
goal is to find a range of parameters offering a good
balance between sample recall and label precision. Nu-
merous combinations of the different features were in-
vestigated, excluding RAW for efficiency reasons. Due
to space restrictions, we will not provide details on all
experiments, but just report results for the best feature
combination (CC + PCA + RES, i.e. r = 3).

As can be seen in Fig. 2, the labeling precision is
generally high, except for small values of κv . It also
degrades for small values of κd, because then only few
samples will be considered in each retrieval run, and
the small overall number of votes leads to an unreliable
majority decision. In terms of sample recall, the method
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Figure 2. Sample recall R, label precision
P and F3 of RBA for different values of
κd, κv using best feature set. Values are
color-coded from 0 (black) to 100% (white).

is more restrictive than CBA retaining large fractions of
the data only for small values of κv .

In order to determine a suitable parametrization, we
calculate the F3 score F3 = 10RP

9R+P , reflecting the as-
sumption that it is more desirable to have correctly la-
beled samples than retaining large portions of the orig-
inal data. The maximum was F3 = 91.54% (R =
82.72%, P = 92.63%) for parameter values κd =
0.25, κv = 0.20. However, from Fig. 2, it becomes ob-
vious that the quality in terms of F3 is comparable for a
range of parameter values around this optimum, mean-
ing that the method is not too sensitive against the con-
crete choice of values. In the following, again favoring
high precision, we will use more restrictive parameter
values of κd = 0.2, κv = 0.30, yielding P = 97.15%,
R = 59.02%, F3 = 91.26% for the above experiment.

4.5 Recognition experiments

The setups derived above are evaluated in a transduc-
tive classification experiment on the MNIST and DWD
data, demonstrating that the methods perform reliably
on different datasets and that tuning the parameters to
specific data – which is not possible in real applications
– is not necessary. We perform a realistic experiment,
where the training sets are first labeled by an expert an-
notator using the proposed methods. Then, the resulting
classifiers are evaluated on the disjunct test sets. For
comparison, we present results of oracle experiments,
using all ground truth labels for training. These consti-
tute an upper limit of the achievable performance.

In order to make the results comparable, an identical
number of manual annotations (162) is used for both
CBA and RBA. Statistics on MNIST for CBA using this
setting were given in Sec. 4.3. For RBA, a recall ofR =
57.91% and precision of P = 90.02% were obtained.

For the 3-fold cross-validation on the DWD data,
also 162 labeling operations were performed for each
validation set. With CBA, on average R = 92.00%
of the training material was retained, yielding an aver-

Figure 3. Labeling quality and classifier
performance vs. number of manual an-
notations for RBA (MNIST, SVM classifier,
κd = 0.2, κv = 0.30).

age label precision of P = 92.18%. With RBA, R =
87.74% of samples were retained with P = 95.64%.

As discussed in [10], a drawback of CBA is that it
tends to discard rare classes in the case of highly unbal-
anced data. While this did not occur for the balanced
MNIST set, only 14 out of 17 classes were recovered
on average on the DWD data. With RBA, all 17 classes
were retained. This shows a major advantage of the
RBA approach: Because of the steered sample selec-
tion, rare classes are less likely to be discarded.

Character recognition rates, obtained with a linear
SVM in a 1-vs-1 multiclass setup, are given in Table 1.
Applying the proposed labeling schemes to the MNIST
data results in a substantial loss in recognition perfor-
mance. Both methods rely on discovering clusters of
similar samples, i.e. from the same writer or written in
the same style. Since the MNIST data is very diverse
and contains hundreds of writers, this assumption is vi-
olated, resulting in a loss of accuracy. RBA performs
worse than CBA because propagating the labels based
on the retrieval lists proceeds considerably slower than
labeling the large portions of data contained within a
cluster. As shown in Fig. 3, the performance of RBA
keeps increasing until approximately 400–500 manual
annotations were performed (still less than 1%).

However, for the DWD data, which is much more
homogeneous in terms of writing style, the results ob-
tained with both CBA and RBA are close to the refer-
ence oracle experiment. This clearly shows the poten-
tial of both methods, provided that large portions of the
data show similar characteristics. Only very little man-
ual effort was required (performing the 162 labeling op-
erations was a matter of a few minutes) to obtain com-
petitive recognition rates, making the proposed methods
especially promising for large single-writer collections.



Table 1. Overview of recognition results (in %) and confidence intervals for conf. level 0.95.
Data Anno. method #Anno RAW PCA CC SKEL RES

Ground truth 60, 000 92.15±0.54 92.60±0.53 95.30±0.43 85.69±0.70 82.32±0.76
MNIST CBA 162 88.13±0.65 88.64±0.64 91.28±0.57 83.83±0.73 81.58±0.77

RBA 162 84.97±0.71 86.76±0.68 89.50±0.62 81.91±0.77 78.36±0.82
Ground truth 8,887 91.59±0.48 93.74±0.42 95.54±0.36 92.21±0.47 88.31±0.56

DWD CBA 162 90.26±0.52 92.05±0.47 93.76±0.42 91.07±0.50 87.43±0.57
RBA 162 87.56±0.57 91.98±0.47 94.64±0.40 90.73±0.50 86.57±0.59

5 Conclusion

Two semi-supervised methods for annotating data
with minimum human effort were proposed. Both build
on ideas from multiview learning in order to propagate
labels reliably, incorporating a voting procedure over
different feature representations. It was demonstrated
that thousands of training labels can be inferred from
very few manual annotations with high accuracy, fa-
cilitating the annotation of large data sets within min-
utes. Using these labels a recognizer was trained that
achieved good performance in a handwritten charac-
ter recognition experiment on two different databases.
Since both approaches rely on finding large clusters of
similar data samples they are especially promising for
collections containing large portions of data from the
same writer(s). In this case, the recognition perfor-
mance is close to the reference oracle experiment.
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